AI for CNC Machining: How is Artificial Intelligence Impacting the Field?

The evolution of CNC machining has been marked by significant technological advancements. From the early days of punch tape and rudimentary programming, CNC machining has evolved to incorporate sophisticated software and high-speed, multi-axis machines.

In recent years, a new technological development has started to make its mark on the field of CNC machining: Artificial Intelligence (AI). AI, with its ability to learn from data, make decisions, and improve over time, is poised to bring about a new wave of innovation in CNC machining.

In this article, we will delve deeper into the role of AI in CNC machining, examining its current applications, future potential, and the challenges it presents. We will also look at how different types of CNC machine shops are adopting AI and the impact it is having on the industry as a whole.

The Impact of AI on CNC Manufacturing

Artificial intelligence is having a profound impact on CNC manufacturing, transforming the way operations are conducted and offering a host of benefits. Here are some key areas where AI is making a significant difference:

1) Continuous Production

One of the most significant impacts of AI in CNC manufacturing is the ability to enable continuous production. AI-powered robots can work non-stop, 24 hours a day, without the need for breaks or downtime.

This is particularly beneficial for mass production and large manufacturing units where maintaining a steady pace of production is crucial. By eliminating the constraints of human fatigue and the need for rest, AI allows for a level of productivity that was previously unattainable. This not only increases the overall output but also ensures faster delivery times.

2) Safe Work Environment

Safety is a paramount concern in any manufacturing environment. AI is contributing to safer work environments by taking over tasks that are dangerous for humans. With machine learning and deep learning systems, machines can handle risky operations without any human involvement. This not only reduces the risk of accidents and injuries but also allows human workers to focus on tasks that require critical thinking and creativity.

3) Direct Automation

AI and machine learning are particularly well-suited for repetitive and recurring tasks. These tasks, which can be monotonous and prone to human error, can be automated with AI, leading to greater efficiency and consistency. This direct automation is beneficial for manufacturers as it helps maintain constancy in production and reduces the likelihood of errors that can lead to waste or rework.

4) Increase in Demand

The integration of AI into CNC machining is leading to a rise in demand for this manufacturing method. As AI and machine learning continue to improve the quality, precision, and overall performance of CNC machining, more industries are recognizing its potential.

Industries such as automotive, medical, aerospace, and marine are increasingly relying on CNC machining for its efficiency and effectiveness. As a result, we’re seeing a significant rise in demand for CNC machining, a trend that is expected to continue as AI technology advances.

AI-Powered Tools and Machines

AI-powered tools and machines are designed to leverage machine learning and deep learning technologies to enhance their functionality and performance. Unlike traditional machines, which follow pre-programmed instructions, AI-powered machines have the ability to learn from data, adapt to new inputs, and improve their performance over time.

For instance, AI-powered machines can respond to voice commands and make decisions for repetitive tasks. They can analyze and process repetitive patterns and respond accordingly, allowing manufacturers to produce quality parts with little to no errors. This not only increases the accuracy and design-orientation of the parts being produced but also reduces wastage and cost per unit for the manufacturers.

Moreover, AI-powered machines are equipped to handle more complex tasks. For example, the tool path, which is the way a tool travels through a workpiece, can be optimized by AI analysis of the data. This allows the machine to adjust the tool path to one that generates the highest productivity level and least wear, thereby enhancing the overall efficiency of the machining process.

Ability of AI Machines to Process Large Data Sets

One of the key advantages of AI machines over traditional ones is their ability to process large data sets. In the context of CNC machining, this means that AI machines can gather, process, receive, and respond to a vast amount of data, which can be used to optimize the machining process.

For instance, AI can be used to automatically process operations data to provide the information needed to make key decisions and take action. This streamlines the analysis process, allowing for more informed and efficient decision-making. Furthermore, AI can be used to predict energy consumption during machining operations, providing an efficient way to manage energy consumption and achieve long-term sustainability in the manufacturing industry.

Adoption of AI in CNC Machine Shops

The integration of Artificial Intelligence into CNC machining is a trend that’s gaining momentum, with more and more machine shops adopting AI into their processes. However, the adoption of AI in CNC machine shops varies depending on several factors, including the size of the organization and the nature of its operations.

Potential Drawbacks and Challenges

Despite its benefits, the adoption of AI in CNC machining is not without its challenges. For one, it requires a significant investment in terms of both time and money. Determining whether the long-term use of AI technology is beneficial for a particular CNC machining operation can be a complex process that requires careful analysis and planning.

Not all CNC machine shops may be able to fully capitalize on the advantages of AI. Small CNC machine shops, for instance, may fulfill a niche and not feel the need to grow their skill sets. Or, their limited processes may lack the ability to capitalize on automation’s advantages. If their equipment and software systems aren’t automation-ready, the complexity of fully automated systems could become a burden.

Difference in AI Adoption Between Small and Large CNC Machine Shops

The adoption of AI in CNC machine shops also varies depending on the size of the organization. Medium to large organizations are generally better positioned to adopt AI in the future. When you combine today’s labor shortage (and skills gap) with the revolution in technology, it’s clear that AI is elevating the importance of experts who program, operate, and truly understand automated CNC machines.

The increased efficiencies gained from AI adoption allow industry engineers in these organizations to perform more value-added tasks, expand quality control efforts, and create smarter operations. This not only enhances the overall productivity and efficiency of these organizations but also positions them to better meet the increasing demand for CNC machining.

The Future of CNC Machining with AI

As AI technology progresses, it’s likely that AI will become advanced enough to be linked to the design software and amend designs automatically for improved results. Generative design, an iterative process to design that automatically optimizes designs, is being used with software such as Autodesk Dreamcatcher linking directly into additive manufacturing (3D printing) or subtractive manufacturing (CNC machining) processes.

The future of CNC machining will almost certainly be a more linked-up one, with the whole manufacturing process linked via cloud computing, with AI optimization, diagnostics, and fault correction. However, human CNC machinists will still be required in the foreseeable future to operate the computer, load the designs, oversee the process, and rectify any faults.

The overall impact of AI and machine learning on CNC machining operations is profound and far-reaching. While there are challenges to be overcome, the potential benefits of these technologies are immense. As we continue to explore and harness the power of AI and machine learning, the future of CNC machining looks set to be one of increased efficiency, productivity, and innovation. Finding the right partner to take advantage of this technology is necessary to ensure your firm does not fall behind the curve.

About Gensun Precision Machining

Gensun Precision Machining is a leading provider of CNC machining services. We have a team of highly qualified technicians and engineers to help you create the parts you need. Reach out today to learn more about our services.

China National Bearing Materials and Heat Treatment Technology Seminar was successfully concluded in Suzhou

From July 18th to 20th, a seminar on bearing materials and heat treatment technology directed by the China Bearing Industry Association and sponsored by Luoyang Bearing Research Institute Co., Ltd. was grandly held in Suzhou. Nearly 200 people including experts and scholars from universities and colleges, experts from research and testing institutions, heads and technical directors of bearing material production companies and bearing manufacturing companies attended the meeting.

At the opening ceremony, Zhou Yu, Chairman of the China Bearing Industry Association, and Gao Yuanan, Vice Chairman of the China Bearing Industry Association, Chairman of the Technical Committee, Secretary of the Party Committee and Chairman of Luoyang Bearing Research Institute Co., Ltd., delivered speeches respectively.

Zhou Yu introduced in detail the current status and existing problems of industry development since the “14th Five-Year Plan”. He pointed out that expert committee members should further serve as vanguards in key and core technology research, strengthen research and research on basic common technologies; A pioneer in the development, application and promotion of technology, new equipment and new processes; broadening international horizons, strengthening exchanges and cooperation at home and abroad, and promoting the improvement of material quality and the advancement of heat treatment technology.

On behalf of the Axis Research Institute, Gao Yuan'an expressed his gratitude to all participants. He reviewed the technical progress made by the technical committee in the heat treatment and application of new materials since the “14th Five-Year Plan”. He said that the Shaft Research Institute has always adhered to the original intention and mission of “forging shaft research director to serve the needs of the industry” and will continue to strengthen basic and key common technology research, strengthen heat treatment talent training and industry enterprise innovation platform construction, and work with relevant units Form a community of destiny, continue to improve my country's bearing material and heat treatment technology levels, and make due contributions to the high-quality development of the bearing industry.

This meeting focused on bearing materials and heat treatment technology, heat treatment equipment technology, bearing waste analysis, failure analysis, etc., and carried out “The Development Direction of Bearing Materials for High-end Equipment”, “Bearing Parts Processing and Quality Issues”, “Green Intelligent Controllable 11 special reports including “Atmosphere Heat Treatment Technology and Application”. It plays a positive role in accelerating the promotion and application of new materials and heat treatment technologies in the bearing industry, promoting the improvement of bearing quality, and promoting the overall development of the bearing industry.

Liu Qiaofang, deputy secretary-general of the China Bearing Industry Association, said in his concluding speech that this meeting is an important meeting held during a critical period for comprehensively promoting the high-quality development of the bearing industry. He hopes that all relevant units will further strengthen research on materials and heat treatment technology and accelerate breakthroughs. Key core technologies such as accurate metallurgical quality evaluation of bearing steel materials, strengthen exchanges and cooperation between industry, academia and research, accelerate the cultivation of new productivity, accelerate the upgrading of bearing heat treatment, and achieve high-quality development of energy conservation, green and environmental protection.

The successful holding of the bearing materials and heat treatment technology seminar will vigorously promote the high-quality coordinated development of the bearing industry. The Shaft Research Institute will continue to adhere to the concept of “working together, innovating and win-win”, fulfilling the mission of “forging the director of the Shaft Research Institute to serve the needs of the country”, and making new and greater contributions to promoting new industrialization and building a modern industrial system!

Pearhead Fall Cat Toy Set – It’s Meowple Season

Treat your cat to a few festive fall friends with the sweet Pearhead Fall Cat Toy Set – It’s Meowple Season!

  • Crinkle maple leaf and one rattle maple syrup bottle
  • Catnip inside
  • Great gift set

Why We Love It:

The Pearhead Fall Cat Toy Set gives your cat toys to bat around this fun season. This pet play accessory set includes two plush cat toys: crinkle maple leaf and one rattle maple syrup bottle each with their own cat nip pouch! These cat toys are perfect for cats and kittens of all ages and sizes. Cat owners will love the hours of playtime with their feline friend that this adorable cat toy is sure to provide. This cat play essential toy set makes the perfect cat gift, kitten gift, cat adoption gift, pet owner gift, cat owner gift, Halloween gift or Thanksgiving gift!

Keyword:

Klim Induction Gloves

 

Redesigned with Klim-specific rider grip and full finger outseams for the ultimate in glove comfort. Integrating the perfect blend of protective technologies and premium ventilated leather.

 

Top 3 Benefits

  • Stay comfortable in warm riding environments
  • Ride confident with advanced protective technology
  • Variable grip articulation for ultimate control and tactility
     

Features

  • Fully vented goat leather street-worthy glove
  • Heavily perforated for immense airflow
  • Warm/hot weather comfort and protection
  • Kwik-access dual adjustment entry
  • YKK® autolock zipper
  • Hard knuckle matte carbon fiber protector
  • Poron® XRD® knuckle protection
  • Poron® XRD® in palm pad with kevlar®-reinforced schoeller® overlay
  • Accordion stretch on back of hand
  • Mult-E-Touch™ smart device functionality
  • 3M™ Scotchlite™ Reflective material for bio motion recognition
  • Exterior top and bottom stitching on fingers
  • Index finger visor wiper
  • Mesh in fourchettes
  • Lap seams on palm and outseams on fingers
  • Klim-engineered rider grip articulation
  • Entry assist pull loop

Related Products

Klim Induction Pro Jacket



Skip to product compare


bestsellers

Klim Induction Pro Jacket


Starting at
$669.95


MSRP Price
$669.95

Save 0% Off MSRP

Klim Induction Jacket – V3



Skip to product compare


bestsellers

Klim Induction Jacket – V3


Starting at
$539.95


MSRP Price
$539.95

Save 0% Off MSRP

Keyword: Start motor

Have You Got the Right Field Lining Equipment for Your Athletic Field?

Athletic fields are not merely used for gaming events, sports, and other community or institutional events. Having the right field lining equipment can make your athletic field a sustainable source of water with its own storm water recapture system.

Modern technology has enabled athletic fields to have better water runoff and irrigation. Some technological advancements can transform your athletic field into a more efficient and environmentally friendly system which has a storm water management solution underneath.

By using the right field lining equipment and materials, you should be able to create a system that can successfully recycle, treat, and store storm water.

Geotextiles and geomembranes are essential when building a storm water recapture system. Together with high-quality turf, pipes, and sand, the system should be able to work effectively. Field lining can be specifically fabricated for this particular application.

RPE (reinforced polyethylene) geomembrane is among the specially made types of field lining that can help you construct an efficient storm water recapture system. The material is fairly impermeable, so it effectively prevents water from seeping into the ground to allow it to flow smoothly to where it is supposed to go.

High-quality RPE geomembranes are guaranteed to last for more than two decades.

Permeable non-woven needle punch geotextiles are ideal for field lining, too. It filters debris, chemicals, and soil from the storm water, making it ideal for erosion control and water treatment.

High-quality geotextiles come in different gauges, and they can be customized to any size or shape you require to save money and time during installation. Consider buying field lining equipment from a seasoned provider that can fabricate field covers, too.

This way, you can cover the athletic field and use it for other applications, too, such as social events. The best field lining materials are durable and they come with pull handles, which are heavy-duty for easy storage and deployment.

Back to All Articles

Keyword: buy geotextile

Interesting Facts About Canal Liners

Seepage is one of the factors that can lead to approximately 30 to 40 percent of irrigation water loss in canals. Applying the right irrigation canal lining should help minimize the impact of seepage. The canal lining is the impermeable layer applied at the sides and at the bed of the canal to boost its discharge capacity and life. It may not completely eliminate water loss such as evaporation, but it can make a difference in reducing water losses to reduce the need to pump more water and minimize pumping costs. Unlined canals handling 30 to 150 liters per second of water may lose 10 to 15 percent of that flow due to weeds and seepage, making lining essential to save about 60 to 80 percent.

At times, the banks of the canal may be highly permeable, leading to water seepage causing standing water on nearby roads and fields, and waterlogged and extremely wet conditions. Hence, lining the canal can help solve these issues. Depending on the material used, the irrigation canal lining should be less permeable compared to when an original unlined bank. At times, the lining may be completely impermeable, too. While you have the option to use concrete lining, it can be 30 times more expensive compared to the upfront cost of high-quality liners. Hence, using canal liners can be a cost-effective way to line irrigation canals instead of relying solely on concrete.

Irrigation canal lining can help water move faster to its destination. Lining reduces the water’s resistance to flow, resulting in a higher velocity. Moreover, there will be less debris and deposits caused by erosion, especially when the surface is made of soil. Canal discharge occurs as the result of the velocity of the flow and the cross-section of the canal. Hence, a high velocity obtainable and allowable in the lined canal results in a smaller cross-section.

Likewise, it can be beneficial for agricultural applications when it reduces erosion, saves water, minimizes weeds, and reduces irrigation time. A surface lining can help reduce the need for maintenance in canals. This is because it prevents the growth of weeds and plants, and deters termites or rats, which may cause holes. Irrigation canal lining allows a higher velocity to prevent soil particles from accumulating and settling to cause siltation.

Choosing the right irrigation canal lining should be easy when you work with a professional. Find a reputable provider of geomembranes online that is known to carry a wide range of irrigation canal linings made with various high-quality materials. Some providers can customize a liner into a manageable size for your canal, too.

Back to All Articles

Outside Welds vs. Factory Welds: What’s Best for Pond Liners?

When constructing pond liners, one decision you must make is choosing between outside and factory welds. This choice can significantly impact your project’s durability, installation speed, and overall cost. Let’s explore the differences between outside and factory welds to determine what’s best for your pond liners.

Understanding the Welds

Technicians perform outside welds on-site, joining liner sections directly. This method allows for flexibility in the field since workers can customize liners to fit the pond’s unique dimensions.

Conversely, technicians complete factory welds in a controlled manufacturing environment. They pre-assemble and fuse the liners before shipping them to the construction site. The controlled conditions ensure consistency and high-quality welds while reducing the likelihood of defects.

Durability Matters

Factory welds generally have the upper hand in terms of durability. The controlled environment minimizes variables, such as weather and dust, that can compromise weld integrity. This results in stronger, more reliable seams that withstand the test of time. This is especially important when creating heavy-duty pond liners.

Outside welds are more susceptible to environmental factors. Ensuring a perfect weld requires attention to detail from experienced welders. However, with the right equipment, skilled personnel can also achieve excellent durability with outside welds.

Speed and Efficiency

Manufacturers complete most of the work with factory welds before the liner reaches the site. Pre-assembly speeds up installation and reduces labor costs and project timelines.

Outside welds require more time on-site, as workers must join each liner section during the construction phase. This can lead to longer installation times and potentially higher labor costs. However, the flexibility of outside welds offers a major advantage for projects with unusual shapes or challenging site conditions.

Cost Considerations

Due to the pre-assembly process, factory welds generally have a higher initial cost. However, the reduced installation time can offset these expenses, making factory welds cost-effective for many projects.

Outside welds might be less expensive initially but could accrue higher costs due to longer installation times and the need for skilled labor. Weighing these costs against the project’s requirements will help project managers determine the most economical option.

Recommendations for Professionals

Selecting the most suitable weld type requires a thorough evaluation of the project’s needs. If the project demands high durability and fast installation, factory welds are best for pond liners. For custom shapes and on-site adjustments, outside welds offer unmatched flexibility.

Consult experienced welders and suppliers because they will provide additional insights and ensure the method you choose aligns with the project’s requirements.

Back to All Articles

面向开发人员的 10 个最佳股票 API

如今,投资方式变得更加多样化和容易。在此背景下,传统金融市场的数字化使股票投资变得触手可及。现在,投资者可以通过连接互联网的设备从任何地理位置轻松交易股票。这种数字化转型使几乎每个人都能参与金融市场。这种数字化转型的驱动力之一是 stocks API。

如今,投资者通过交易平台进行股票投资。与传统金融机构相比,提供股票投资的平台为投资者提供了更方便、更易访问和用户友好的体验。这些平台通常配备用户友好的界面,允许投资者交易股票、管理他们的投资组合和跟踪市场走势。此外,大多数平台通过提供教育资源、分析工具和投资组合管理服务等附加功能来帮助投资者增加他们的金融知识。在本文中,我们将仔细研究这些平台使用的股票 API 及其重要性。然后,我们将仔细研究开发人员最喜欢的现有 API。

揭开 Stocks API 的神秘面纱:了解其意义和作用

Stock API 是提供对股票市场数据的访问的 Web 服务。这些 API 通常由金融科技公司开发,为用户提供对各种财务信息的访问权限,例如实时或历史股票价格、市场交易量、公司信息和其他财务数据。股票 API 提供对全球市场数据的访问,使投资者能够从一个点跟踪和分析不同地区和行业的股票。此外,这些 API 通常包含替代数据。因此,投资者可以超越传统数据并进行更全面的分析。

股票 API 的重要性在于,它们通过为投资者提供快速准确的数据访问来帮助投资者改进他们的交易策略。例如,访问实时股票价格使投资者能够对即时市场波动做出快速反应。另一方面,历史数据有助于投资者分析过去的表现并确定未来趋势。此外,股票 API 提供的另类数据可帮助投资者发现传统财务数据之外的趋势和机会。因此,股票 API 对于任何想要制定有效交易策略并在全球金融市场进行成功投资的人来说都很重要。

探索可用的 10 大 Stock API

如今,几乎每个金融数据平台都使用股票 API。这些平台旨在以最快的方式向用户提供最准确的数据。在这种情况下,可靠的股票市场数据 API 的重要性与日俱增。在本节中,我们将列出市场上开发人员和企业首选的前 10 个股票市场 API。

Marketstack 应用程序接口

Marketstack API 是市场上开发人员和企业首选的最佳财务数据 API。此 API 拥有 30,000 多个客户,包括 Uber、Amazon 和 Accenture 等全球公司。marketstack API 覆盖全球 70 家全球证券交易所。其中一些是纳斯达克、上交所、纽约证券交易所、ENX 等等。由于其广泛的全球证券交易所,它还为用户提供了超过 170,000 个股票行情的实时数据。

marketstack API 受到大众青睐的最重要原因之一是它提供历史数据。它为其支持的所有股票提供 30+ 年的历史数据。因此,使用此 API 的平台允许其用户通过提供历史数据来制定投资策略。它还具有对开发人员友好的结构。它可以轻松集成到当今所有主要编程语言中。此外,marketstack API 通过其提供的 JSON 响应缩短了开发人员的集成过程。最后,它是一个带有免费计划的股票 API。它为用户提供每月最多 100 次 API 调用的免费使用。

Polygon.io

Polygon.io 是 Google 和 Revolut 等企业首选的流行股票市场 API。它有四种服务,分别是产品股票、期权、指数和货币。这些产品中的每一个都是全面的。例如,其股票产品为投资者提供 10,413 家公司股票、15 年历史数据和 100% 市场覆盖等服务。它还提供的 JSON 响应非常详细。它在提供的响应中提供 market、primary exchange、ticker root,甚至 total employees 等字段。

此 API 为开发人员和企业提供不间断的服务,正常运行时间为 99.99%。它具有可以快速集成的结构。此外,它还在其主页上提供了 Java、Go 和 JavaScript 等主要编程语言的集成代码。最后,它每分钟提供 5 次免费 API 调用。

FMP

Financial Modeling Prep (FMP) 是一项 Web 服务,使用快速、准确且易于使用的金融市场数据,可以轻松创建财务应用程序和模型。此 API 提供各种金融数据,包括 90+ 交易所和 70,000+ 股票 30 多年的历史价格和基本数据。FMP 不仅仅是一个提供财务数据的财务 API。它还向用户提供市场新闻和公司信息。

FMP 从可靠来源获取提供给用户的财务数据。因此,使用此 API 的企业和开发人员为其用户提供了极其安全的交易体验。此 API 具有 100 多个终端节点,以 JSON 格式提供其所有响应,其中大多数以 CSV 格式提供。它还每天免费提供 250 次 API 调用。

Tiingo

Tiingo 是一个可靠的企业级金融市场 API,拥有广泛的用户网络,为 Microsoft 和 Swisscom 等公司提供服务。它为世界各地的用户提供 80,000+ 股票代码。它还支持风靡全球的 NYSE、NYSE Arca、NYSE American 和 NASDAQ 等全球证券交易所。

Tiingo 为其用户提供 50+ 百万篇文章的综合资源。这有助于开发人员获取和分析过去的新闻并轻松关注当前新闻。它还提供 140 多种货币的外汇数据。Tiingo 以免费计划和付费计划的形式向其用户提供这些服务。

IEX 云

IEX Cloud 是另一个在互联网上拥有广泛用户群的金融数据 API。它提供的独特财务数据 API 包含非常全面的数据。它提供全面的数据,例如股票的变化、变化百分比、关闭源,甚至关闭时间。IEX Cloud 通过实时、历史和日内端点为其用户提供服务。

此 API 是一个非常易于使用的金融 API。它在其开发人员友好的文档中提供了许多有关 API 的有趣信息。最后,它有免费试用,但没有任何免费订阅计划。

Alpha Vantage

Alpha Vantage 是市场上最全面的库存 API 之一。它是一个为交易者提供有关股票、外汇、加密货币和其他金融资产的免费实时数据的平台。凭借其先进的 API 和用户友好的界面,它为投资者提供了必要的工具来跟踪、分析市场并做出明智的投资决策。

此 API 提供对 100 多个技术指标的访问,这些指标将帮助交易者高速执行技术分析。它还提供 20+ 年的历史股票数据。Alpha Vantage 为其用户提供了一个描述性很强的文档。此外,本文档还提供了 Python、Node.js 和 PHP 等编程语言的示例集成代码。此 API 有一个免费计划。用户可以免费使用 Alpha Vantage 每天 25 个请求。

Alpaca

Alpaca API 是最受欢迎的 Web 服务之一,用于各种交易,例如股票、期权和加密货币交易。它非常适合不同的操作,例如算法交易、自动投资策略以及与第三方应用程序的集成。Alpaca API 提供了许多优势,例如免佣金交易、实时数据流和灵活的编程选项。

Alpaca API 的突出特点之一是可以进行免佣金交易。因此,投资者可以最大限度地降低交易成本。它还允许投资者通过其实时数据流即时监控市场走势并进行相应的交易。最后,由于与各种编程语言的兼容性,它提供了灵活的编程选项,因此交易者可以轻松实施他们的算法和自动交易策略。此外,此 API 具有免费注册选项。

EOD 历史数据 API

EOD 历史数据 API 是目前市场上服务范围最广的 API 之一。此 API 为其用户提供全球 70+ 证券交易所、30+ 年的数据、150,000+ 股票代码、20,000+ ETF、600+ 指数和 1,100+ 外汇对。在这方面,它几乎可以服务于全球运营的所有交易平台。此外,它的 Trustpilot 分数为 4.8。

此 API 是一种对开发人员友好的 Web 服务,具有 24/7 全天候技术支持和易于集成的结构。它提供了 Python、PHP、Java 和 C# 等编程语言的示例集成代码。此外,它还在其免费计划中为用户提供每天 20 次 API 调用的限制。

OpenFin API

OpenFin API 是专为金融机构和开发人员量身定制的强大金融 API。此 API 通过单一界面提供对财务数据和功能的访问,从而可以更高效、更快速地开发和集成财务软件。

在单一平台上提供可访问性使金融机构和第三方开发人员能够更轻松地在不同应用程序之间传输数据和集成功能。此外,凭借其先进的安全功能,它确保金融数据的安全传输和存储。最后,它为用户提供了一个用于测试的演示。

Intrinio

Intrinio是全球企业首选的金融和市场数据API。它还允许获得过去 50 年的准确历史市场数据。Intrinio 的资源配备了预测和分类机器学习算法,可以仔细分析股票期权和股票数据,为投资者和股票交易者提供关键信息。

此 API 通过提供技术支持和实时聊天服务为企业和开发人员脱颖而出。此外,通过它提供的详细文档,此 API 涉及其提供的服务的各个方面。最后,它为用户提供免费试用。

结论

总之,股票 API 的重要性突出,因为它使金融市场的访问民主化,并使投资者能够做出更明智的决策。API 通过提供快速准确的数据访问,为投资者提供创建交易策略的优势。在这种情况下,选择可靠的股票 API 似乎是一个对企业产生影响的因素。

常见问题

问:marketstack 是免费的金融数据提供商吗?

答:是的。除了高限额和负担得起的付费计划外,它还提供每月限于 100 次 API 调用的免费计划。它还在此计划中提供了历史数据。

问:为什么历史金融市场数据对投资者很重要?

答:历史金融市场数据有助于投资者分析趋势和了解市场行为。此外,投资者可以利用这些数据制定未来的投资策略。

问:marketstack 提供多少年的历史数据?

答:Marketstack API 为用户提供其支持的股票超过 30 年的历史数据。

问: marketstack 是否提供股票的基本数据?

答:是的。它在响应中提供详细字段,例如 EOD、代码、国家/地区和证券交易所名称。

生成式AI及其对API和软件开发的影响

生成式AI已经激发了全世界的想象力。过去,计算机在许多方面都超越了人类,但大多数情况下,它们擅长的是重复性和确定性的任务。程序员编写的算法旨在反复且准确地执行任务,除非出现“bug”。当出现问题时,技术熟练的人类会修正计算机程序中的bug。然而,随着ChatGPT等生成式AI工具的出现,这种范式正在发生转变,因为计算机似乎已经实现了从确定性能力到创造性思维的飞跃。

生成式AI以 文本API、语音API 或 图像API 形式产生的输出可以取悦人类并增强我们的思考,但如果被滥用,它也可能造成破坏。我们目前还不知道这方面的极限在哪里。然而,我们已经深入思考了生成式AI对人类-计算机交互、软件开发和API的深远影响。

AI机器人将有助于推动人机交互的发展。与我们目前广泛使用的Alexa和Siri等工具相比,当前的大型语言模型(LLMs)所能实现的功能显得相形见绌。《纽约时报》概述了人们正在利用这些功能的一些非常有趣的方式。随着这些机器人的不断进步,我们可以想象会出现更多复杂的应用场景。这些新的应用场景将催生新的习惯,从而推动新一轮的技术进步。

在我看来,这些与计算机互动的新方式将从根本上改变我们与软件的关系。就像在个人计算、互联网浏览器和我们可以随身携带的移动设备方面,图形用户界面(GUI)的飞跃一样,由生成式AI驱动的交互将使我们重新思考未来软件的开发方式。

生成式AI不仅将改变我们与技术的交互方式,还将促使我们重新构想软件的构建和设计原则,以适应更加智能、灵活和个性化的需求。这将是一个持续演进的过程,随着技术的不断进步,我们将看到更多创新性的应用场景和解决方案不断涌现。

展望未来,所有的软件界面都将配备具有创造性的助手,它们将为我们获取信息和数据、执行操作,并辅助我们完成各种任务。然而,这些机器人并不仅限于聊天界面。我相信它们将深度嵌入人类已经与计算机进行交互的现有工作流程中。例如,机器人将开始协助完成繁重的用户界面和数据任务,通过语音进行交互,当然也包括通过聊天机制进行交互。

聊天机器人示例:聊天机器人服务-Chatbase 、AI 聊天机器人-sendbird 、AI聊天机器人-Chatling 等

我认为具有巨大潜力的一个领域是简化复杂的图形用户界面(GUI)。对于复杂的任务,图形用户界面往往变得难以使用,各种操作隐藏在成排的按钮、菜单、快捷键和程序后面。人们需要多年的训练才能熟练掌握这些界面,即便如此,大多数人仍在使用时感到困难重重。而基于领域理解训练的生成式AI则有可能简化这些体验。生成式AI能够理解用户的意图和上下文,从而提供更加直观、简洁和高效的交互方式,使用户能够更轻松地完成复杂的任务。

然而,这些机器人只能通过API执行“操作”。API是驱动AI“思考”的手和脚。API将这些机器人与数据以及动词和名词连接起来,以便在现实世界中完成任务。其中一些机器人可能是完全自主的。Auto-GPT是一个最近越来越受欢迎的实验项目,它可以将一系列操作串联起来,以实现人类设定的目标。如果这些机器人继续受到欢迎,那么确保它们调用的API经过验证和测试以产生正确的结果将变得至关重要。到目前为止,我们主要设计的是供人类使用的应用程序的API,但为机器设计API将成为一个日益重要的领域。

如果你是某个组织的领导者,那么这对你意味着什么呢?如果你的组织没有API或API设计得很差,那么你在这些机器人眼中就是隐形的。这意味着你的组织将无法利用这些新兴技术来提高效率、自动化任务或创新产品和服务。因此,你需要考虑投资于API的设计和开发,以确保你的组织能够跟上技术发展的步伐,并与这些机器人进行交互。这可能涉及到重新评估你的业务流程、数据架构和软件开发实践,以确保它们能够支持API的集成和使用。

我们认为,为了参与软件世界中的价值交换,公司需要加倍努力实施其以API为首的战略。公司已经利用多种渠道与消费者进行互动;这是他们利用已建立的能力的另一种方式。

到目前为止,供消费者使用的免费大型语言模型(LLM)都是基于公开可用的数据源进行训练的,这意味着大多数LLM将很快被商品化。能够创建、收集或验证高价值数据的组织和个人在这一等式的数据端占据有利地位(例如,彭博社最近开发了一个利用其专有金融数据的生成式AI模型)。

大型语言模型API示例:360多模态大语言模型 、百度文心一言大模型 、金融语言模型ntropy 、Baichuan文本生成模型 、腾讯混元大模型等

如果公司打算将数据变现,就需要为正确的用例和错误的用例制定明确的指导方针。这需要在新的世界中设计和开发适当的API来访问数据。监管指南也将发挥巨大作用,但需要一段时间才能跟上。与此同时,公司还需要迎头赶上,以保护其获取的数据。这意味着公司需要投资于数据安全和隐私保护,以确保其数据在传输、存储和处理过程中不被未经授权的访问、使用或泄露。此外,公司还需要确保其数据使用符合相关法规和行业标准,以避免潜在的法律风险和声誉损失。

LLM(大型语言模型)不能创造新的事实,但它们很擅长编造事实(即产生幻觉)。这就是人类将发挥关键作用的地方。无论是验证文本、验证代码,还是“挑选”正确的句子,人类的工作将继续是“调试”输出,而不是调试输入。输入仍然是输入到模型中的数据,尽管可能有办法编写更好的提示,但目前(据我所知)还没有办法知道为什么生成式AI的黑盒子会输出它所输出的内容。这是这些LLM的一个关键局限性。关于数据的来源、应该是什么正确的来源等问题,目前各个论坛都在进行热烈的讨论。

人类和人类社会定义了什么是有价值的。并非所有由生成式AI创作的诗歌和书籍都有价值。虽然看到计算机生成这些作品很迷人,但这些作品的价值最终将取决于它们所获得的关注度。不幸的是,这里存在大量滥用技术的可能性,因为这些工具有可能无意中生成与真实事实难以区分的虚假信息。

我相信,通过可信来源的验证和人类协作将在解决这些挑战中发挥关键作用。我们需要建立机制来验证生成式AI输出的真实性和准确性,同时也需要教育公众如何识别虚假信息,以避免技术被滥用。

AI生成检测API示例:抄袭检测器 API-Copyleaks 、Winston-AI探测器 、GPTZero-AI探测器 、深度伪造语音检测 、AI内容检测服务-Content Detector

对开发者的影响

API调试和API测试将变得更加重要,以确保正确性。这些过程将通过生成式AI得到增强,从而减少开发人员获得生产力的时间。

  • API设计和架构仍然在很大程度上属于熟练的人类领域。编写代码将越来越商品化,但如何选择正确的组件来创建集成的体验将成为开发人员的一项关键区分技能。
  • 与AI驱动的机器人结合使用的协作式API工作区将成为使用API的强大方式。静态文档体验和开发人员门户将感觉更加过时,而AI技术只会加速它们的消亡。
  • API集成将变得更加容易。基于代码的点到点集成或笨拙的集成将显得僵化。AI驱动的集成将能够集成新的API,并在它们出现故障时更快地恢复。
  • 最后,生成式AI将降低非开发人员构建API的门槛。这意味着更多人将能够参与到API的开发和使用中来,促进创新和合作。然而,这也要求非开发人员需要掌握一定的技术和知识,以便能够有效地利用生成式AI来构建高质量的API。

对于公司的影响

  • 公司将开始利用AI驱动的软件工具来提高生产效率。这些工具可以帮助公司自动化重复性任务,优化流程,并更快地响应市场变化,从而提高整体业务效率。
  • 没有API的公司将在AI领域变得“隐形”,因此在API经济中将进一步落后。在数字化时代,API是连接不同系统和服务的桥梁,没有API的公司将无法与AI模型进行交互,也无法利用AI技术来优化业务流程和创造价值。
  • 拥有不佳API的公司需要设计更好的API,以便AI模型能够正确地与其数据和操作进行交互。好的API应该具有清晰、简洁的接口设计,易于集成和使用,并且能够提供可靠的数据和功能。
  • 公司需要对其已知和未知的API进行盘点。如果公司正在暴露其希望将来利用的数据,那么现在就需要采取行动。这包括评估现有API的性能和安全性,确定需要改进的领域,并制定计划来优化API设计和实现。
  • 公司需要更加智能地处理其API的身份验证和验证机制。随着机器人和自动化工具的普及,公司需要确保他们已经采取了适当的治理和安全措施,以防止未经授权的访问和数据泄露。这包括实施强密码策略、多因素身份验证、API密钥管理等措施,以确保只有授权用户才能访问和使用公司的API。

如何发现更多AIAPI

幂简集成是国内领先的API集成管理平台,专注于为开发者提供全面、高效、易用的API集成解决方案。幂简API平台可以通过以下两种方式找到所需API:通过关键词搜索API(例如,输入’IP地址定位‘这类品类词,更容易找到结果)、或者从API Hub分类页进入寻找。

此外,幂简集成博客会编写API入门指南、多语言API对接指南、API测评等维度的文章,让开发者快速使用目标API。

原文链接:https://blog.postman.com/generative-ai-and-the-impact-on-apis-and-software-development/

Keyword: ai生图

探索大语言模型资源:API融合与应用实践

随着人工智能的兴起,许多内容创作工具开始融入AI技术,帮助用户快速产出所需内容。本文将简明扼要地介绍AI领域的核心技术——大型语言模型(LLMs),探讨其工作原理以及如何通过API实现人机高效对话。

大型语言模型(LLMs)是AI领域的一项关键技术,它们通过理解和生成语言来促进人与机器之间的流畅交流。这些模型通过分析大量文本数据,学习语言的模式和结构,从而能够生成连贯且准确的文本响应。通过集成API,LLMs可以轻松地嵌入各种应用程序中,使得用户能够与机器进行高效沟通。

大型语言模型(LLMs)的发展历史

让我们从大型语言模型(LLMs)的早期发展谈起。在2000年代初,语言模型主要基于统计学,如n-gram模型,它们通过统计词序列的概率来预测下一个词。但由于计算能力和数据量的限制,这些模型无法深入理解语言的深层含义。进入2010年代,随着计算力的提升和数据量的增加,神经网络技术开始被用于构建语言模型,递归神经网络(RNN)和长短期记忆网络(LSTM)使得模型能够识别更长距离的依赖关系,性能得到显著提升。

2017年,Google发表了一篇名为“Attention Is All You Need”的研究论文,首次提出了Transformer模型。这种新型神经网络架构通过自注意力机制处理序列数据,解决了RNN和LSTM在处理长序列时的效率问题,并极大提高了训练速度。

2018年,人工智能领域迎来了两个重要的里程碑。Google推出了BERT,这是一种基于Transformer的双向编码模型,它通过双向训练显著提升了语言理解能力。同时,OpenAI发布了GPT系列模型,这些模型通过大规模数据预训练,展现出了强大的语言生成能力。GPT-3作为LLMs的一个标志性模型,拥有1750亿个参数,其语言处理能力令人印象深刻。

目前,LLMs正在向多模态领域扩展,整合文本、图像和声音等多种类型的数据。同时,针对特定领域的专业化模型也在开发之中,以提升模型在特定任务上的表现和适用性。

在LLMs的发展背后,大规模的资源投入是必不可少的。无论是数据的收集与处理,还是模型的训练与优化,都需要大量的计算资源和专业知识。随着技术的进步,资源的管理和利用变得越来越关键。

在LLMs的发展过程中,资源的优化和合理分配对于提升模型性能至关重要。更高效的算法和更强大的硬件可以加速模型训练,节省时间和成本。

大模型资源的可访问性也是推动AI普及的关键。通过API等技术,更多的人可以利用这些强大的模型解决实际问题,无需从头构建复杂的系统。

在多模态应用中,大模型资源的整合和协同工作对于实现高效沟通至关重要。结合不同类型的数据和模型,可以创造更丰富、直观的用户体验。

随着专业化模型的发展,大模型资源的定制化和优化也变得越来越重要,这不仅能够提升模型在特定任务上的表现,还能减少资源的浪费。

通过这些途径,大模型资源的合理利用和创新管理将继续推动LLMs的进步,为我们带来更智能、更高效的AI体验。

LLMs的原理与架构

根据发展历史可以看出,LLMs是AI领域中最基础的技术模型之一。LLMs的基础原理是利用深度学习技术,特别是转换器(Transformer)架构,在大规模数据集上理解和生成人类语言。

人工智能(AI)技术子集关系图其中,转换器架构是LLMs的核心,通过自注意力(self-attention)机制来处理序列数据,捕捉文本中长距离的依赖关系。在这一过程中,大模型资源的投入对于模型的性能至关重要,因为它们需要大量的数据和计算能力来训练和优化。

LLMs的训练又分为两个阶段:预训练和微调。预训练即在海量文本数据上进行学习,让模型学习语言的一般规律,比如语法、语义和上下文之间的关系,让其输出的回答能符合人类用语。比如“right”这个词,要让模型能够根据不同的语境理解什么时候是“对”,什么时候又代表“右”。微调则是针对特定任务(如问答、文本摘要)调整模型参数,使其在特定应用上表现更佳。这一训练过程需要大量的大模型资源,包括数据集、存储空间和计算资源。

而在Transformer模型中,编码器(Encoder)和解码器(Decoder)通常是配套使用的,尤其是在需要生成序列的任务,如机器翻译。然而,在一些特定的应用场景下,编码器和解码器确实可以分开使用:编码

器独立使用 – BERT编码器

可以单独用于那些不需要生成新文本的任务,例如文本分类、情感分析、命名实体识别等。BERT是一个典型的例子,它的结构基本上是Transformer的编码器堆叠而成,可以有效地为下游任务生成富含上下文信息的文本表示。这种模型的构建和训练需要大量的大模型资源,以确保其能够处理复杂的语言结构和模式。

解码器独立使用- GPT解码器

有时也可以单独用于生成任务,比如GPT系列模型,它们实际上就是由解码器组成的。这些模型通过预训练学习语言模式,然后可以用于文本生成、摘要、甚至编码解码等任务。GPT模型的成功在很大程度上依赖于大模型资源的利用,包括大规模的语料库和强大的计算能力。

简而言之,如果任务是从给定的文本中提取信息或分类,可能只需要编码器部分。如果任务是根据给定的一些信息生成新的文本,可能会使用到解码器部分,或是完整的编码器-解码器架构。无论是哪种情况,大模型资源的有效管理和使用都是实现这些任务的关键。通过合理分配和利用这些资源,可以提高模型的性能,使其在各种AI应用中发挥更大的作用。

Transformer架构原理图

LLMs的能力如何?

大型语言模型(LLMs)已经成为技术领域中的重要力量,在多个关键领域扮演着核心角色,包括信息检索、文本创作、代码生成、情感分析,以及聊天机器人和对话式AI的开发。例如,在文本创作领域,像ChatGPT这样的模型通过理解用户输入并提供智能响应,展现了LLMs在对话交互中的高级能力。在情感分析领域,LLMs能够深入分析文本中的情感内容,为企业提供了一个强大的工具来监控和评估公众对其品牌或产品的感知。例如,流媒体服务提供商可以利用LLMs分析社交媒体上的观众讨论,以评估某部剧集的受欢迎程度或观众情感的变化趋势。这些应用不仅提高了企业的运营效率,也为提供个性化用户体验开辟了新途径。

尽管LLMs在多个领域有所应用,但它们的输出依赖于预处理的数据。这意味着如果数据不全面或不准确,模型的输出也可能是错误的。这种现象被称为“幻觉”,即AI在回答问题时可能会产生不准确的信息。总的来说,一旦模型的训练数据和参数被固定,它们就没有内置的机制来从交互中学习或记住错误以便于未来纠正。这些模型不会在与用户的每次互动后更新知识库或调整行为。在某些情况下,可以通过人工智能系统中的其他组件来实现错误学习和纠正的功能。例如,可以构建一个监督层,当模型给出错误答案时,它会记录下来并通过某种形式(如人工反馈)将正确答案输入系统。然而,这样的反馈循环并不是LLMs自身的一部分,而是需要额外的系统设计和人工干预。

为了提升LLMs的准确性和可靠性,管理和优化大模型资源至关重要。这包括确保训练数据的质量和多样性,以及开发有效的数据预处理和分词技术。通过这些方法,可以减少模型在处理未知或不准确数据时产生的错误输出,从而提高用户体验和模型的实用性。此外,研究者们也在探索如何让LLMs从错误中学习,通过自我纠正机制来提升模型的性能。这些研究可能会为LLMs的未来发展提供新的方向,使它们能够更加智能地适应和改进。

概念应用:LLMs在API调用上的智能化体现

在API调用的智能化体现中,LLMs的应用正日益广泛,API在这一过程中扮演了至关重要的角色。LLMs通过API进行训练,并将训练好的模型通过API输出,实现了技术的相互促进和协同工作。以Gorilla项目为案例,我们看到了检索感知的LLaMA-7B模型如何专门用于增强API调用的准确性。Gorilla通过整合API,不仅增强了AI的对话能力,而且通过外部工具提高了对话精准度。这种模式的成功表明,API作为通用语言,可以使系统间的互动更加高效。

基于Gorilla项目的启示,幂简集成进一步设想:LLMs与API资源库结合会产生怎样的奇迹呢?围绕LLMs的原理,我们将基础文本数据升级为API资源库,将API的描述文档作为预处理的数据,更多地对数据进行指定归类。接下来,将大量API资源库数据作为解决方案进行学习和微调,最终生成了一种新型的LLMs。

例如,随着老龄化的到来,现存的金融业自助机需要升级为通过自然语言的方式交互,以方便老年人的金融服务,就可以基于LLMs和API资源库打造一个全新的自然语言交互模块。我们假定一个常规操作流程:

1、用户请求:“我要取款”。

2、LLMs处理:LLMs理解用户的需求,把采集到的数据转化为API参数,进行身份验证。

3、身份验证:调用人脸识别等API,验证用户身份,同时以当前语音特征为会话编号,进行下一步的交互。

4、用户请求:“取1000元”。

5、LLMs处理:LLMs理解用户的需求,进行后续的操作。

通过这种方式,大模型资源的整合不仅提升了API调用的智能化水平,还为金融服务的数字化转型提供了新的可能性。金融机构可以利用这些技术,提供更加个性化和高效的服务,同时也能够更好地应对数字化转型过程中的风险和挑战。

LLMs的未来潜力

随着技术的发展,LLMs在多个领域的作用将变得越来越关键。结合API的应用,LLMs能够更有效地处理数据,提升与用户的自然交互。API的使用使LLMs能直接连接到持续更新的庞大数据源,提高了应用的实用性和准确性。此外,大模型资源与其他新兴技术如区块链的结合也可能带来创新的变革。例如,大模型资源在区块链平台上的分布式运算能力,以及确保数据训练和生成过程的透明度和可追溯性,可能会开启数据安全性、可验证性和去中心化应用的新时代。

幂简集成相信,随着AI技术与更多技术的融合,势必会创造出新的商业模式和增值服务,推动技术创新的边界不断拓展。在这个过程中,大模型资源将成为推动这一变革的核心驱动力。通过整合和利用大模型资源,企业和开发者可以构建更加智能和高效的应用,为用户提供更加丰富和个性化的体验。同时,大模型资源的广泛应用也将促进数据科学、机器学习等领域的发展,为解决复杂问题提供更加强大的工具和方法。随着大模型资源的不断优化和升级,其在各个行业的应用将更加深入和广泛,为技术创新和商业发展带来更多的可能性。

LLMs常见FAQ

1、大模型LLMs中有一种涌现现象,你知道么?
A: 是的,涌现现象指的是在大模型中,随着模型规模的增加,模型表现出一些在小规模模型中未观察到的行为或能力。

2、大模型LLMs涌现现象主要体现在哪些方面?
A: 涌现现象主要体现在模型的学习能力、泛化能力以及处理复杂任务的能力上,随着模型规模的增加而显著提升。

3、大模型的重复生成现象如何缓解?
A: 重复生成现象可以通过增加模型的多样性训练、使用不同的提示策略或者调整模型的输出阈值来缓解。

4、LoRA这种微调方法和全参数比起来有什么劣势吗?
A: LoRA(Low-Rank Adaptation)是一种参数效率更高的微调方法,相比全参数微调,可能在模型的表达能力和微调后的泛化能力上有所限制。

5、如何解决大模型遗忘问题?
A: 可以通过持续预训练(Continue PreTrain)或者使用少量样本微调(Few-shot tuning)来缓解模型遗忘问题。

6、领域模型微调后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
A: 可以通过在微调过程中加入通用领域的数据,或者使用多任务学习框架来保持模型的通用能力。

7、进行SFT操作的时候,基座模型选用Chat还是Base?
A: SFT(Supervised Fine-Tuning)时选择Chat模型或Base模型取决于具体任务的需求和可用资源,Chat模型通常更适合对话任务。

8、领域模型词表扩增是不是有必要的?
A: 是的,领域模型词表扩增可以帮助模型更好地理解和处理特定领域的术语和概念。

9、如何训练自己的大模型?
A: 训练自己的大模型需要大量的数据、计算资源以及专业的训练框架,可以通过预训练和微调的方式来逐步构建和优化模型。

10、多轮对话任务如何微调模型?
A: 多轮对话任务可以通过构建对话上下文的连续性、使用对话管理策略以及优化对话状态跟踪来微调模型。

参考资料:

什么是大语言模型

The Transformer Model – MachineLearningMastery.com

Gorilla